一、个人情况介绍
李兵,男,1990年出生,工学博士,讲师,硕士生导师,2021年10月于南京航空航天大学取得博士学位,同年11月到公海公海7108线路任教,中国自动化学会会员,河南省仪器仪表学会理事,先后参与多项国家级、省部级科研项目,目前主持国家自然科学基金青年科学基金1项,河南省科协青年人才托举工程项目1项,河南省科技攻关项目1项。 同时担任多个学术期刊审稿人,在Aerospace Science and Technology, Mechanical Systems and Signal Processing, Engineering Applications of Artificial Intelligence 等故障诊断和航空航天领域发表论文10余篇,其中第一作者6篇,并申请多项发明专利。
二、主要研究领域
围绕人工智能的工程应用、智能制造、工业设备健康管理等方向,开展以下研究:
1、数据驱动的智能故障诊断技术,如航空发动机气路部件故障诊断、复杂工业设备故障诊断等;
2、基于人工智能技术的工业设备故障特征提取与健康评估;
3、工业自动化与智能硬件。
三、代表性研究成果
[1] Bing Li, Yongping Zhao, Yaobin Chen. Unilateral alignment transfer neural network for fault diagnosis of aircraft engine[J]. Aerospace Science and Technology, 2021, 118: 107031. (Q1, TOP)
[2] Bing Li, Yongping Zhao, Yaobin Chen. Learning transfer feature representations for gas path fault diagnosis across gas turbine fleet[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 104733. (Q1, TOP)
[3] Bing Li, Yongping Zhao. Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103968. (Q1, TOP)
[4] Bing Li, Yongping Zhao, Huan Wu, Huijun Tan. Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet[J]. Mechanical Systems and Signal Processing, 2021, 147: 107110. (Q1, TOP)
[5] Bing Li, Yongping Zhao. Multi-label learning using label-specific features for simultaneous fault diagnosis of aircraft engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 10: 1-17. (SCI, Q4)
[6] Bing Li, Yongping Zhao, Yaobin Chen. Simultaneous fault diagnosis for aircraft engine using multi-label learning[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal Systems and Control Engineering. (SCI, Q3)
四、招生信息及联系方式
招生方向:
欢迎有想法的自动化、测控、电子电气、机械等专业背景的学生报考,也欢迎想要提前参与科研训练的本校本科生联系。
联系方式:
电子邮箱:bing_l@haut.edu.cn